I think I can see what is breaking down in evolutionary theory – the strict construction of the modern synthesis with its belief in pervasive adaptation, gradualism and extrapolation by smooth continuity from causes of change in local populations to major trends and transitions in the history of life.
A new and general evolutionary theory will embody this notion of hierarchy and stress a variety of themes either ignored or explicitly rejected by the modern synthesis.
These quotations come from a recent paper in Palaeobiology by Stephen Jay Gould. What is the new theory? Is it indeed likely to replace the currently orthodox ‘neo-Darwinian’ view? Proponents of the new view make a minimum and a maximum claim. The minimum claim is an empirical one concerning the nature of the fossil record. It is that species, once they come into existence, persist with little or no change, often for millions of years (‘stasis’), and that evolutionary change is concentrated into relatively brief periods (‘punctuation’), these punctuational changes occurring at the moment when a single species splits into two. The maximal claim is a deduction from this, together with arguments drawn from the study of development: it is that evolutionary change, when it does occur, is not caused by natural selection operating on the genetic differences between members of populations, as Darwin argued and as most contemporary evolutionists would agree, but by some other process. I will discuss these claims in turn; as will be apparent, it would be possible to accept the first without being driven to accept the second.
The claim of stasis and punctuation will ultimately be settled by a study of the fossil record. I am not a palaeontologist, and it might therefore be wiser if I were to say merely that some palaeontologists assert that it is true, and others are vehemently denying it. There is something, however, that an outsider can say. It is that the matter can be settled only by a statistical analysis of measurements of fossil populations from different levels in the rocks, and not by an analysis of the lengths of time for which particular named species or genera persist in the fossil record. The trouble with the latter method is that one does not know whether one is studying the rates of evolution of real organisms, or merely the habits of the taxonomists who gave the names to the fossils. Suppose that in some lineage evolutionary change took place at a more or less steady rate, to such an extent that the earliest and latest forms are sufficiently different to warrant their being placed in different species. If there is at some point a gap in the record, because suitable deposits were not being laid down or have since been eroded, then there will be a gap in the sequence of forms, and taxonomists will give fossils before the gap one name and after it another. It follows that an analysis of named forms tells us little: measurements of populations, on the other hand, would reveal whether change was or was not occuring before and after the gap.
My reason for making this rather obvious point is that the only extended presentation of the punctuationist view – Stanley’s book, Macroevolution – rests almost entirely on an analysis of the durations of named species and genera. When he does present population measurements, they tend to support the view that changes are gradual rather than sudden. I think that at least some of the changes he presents as examples of sudden change will turn out on analysis to point the other way. I was unable to find any evidence in the book which supported, let alone established, the punctuationist view.
Of course, that is not to say that the punctuationist view is not correct. One study, based on a proper statistical analysis, which does support the minimal claim, but not the maximal one, is Williamson’s study of the freshwater molluscs (snails and bivalves) of the Lake Turkana region of Africa over the last five million years. Of the 21 species studied, most showed no substantial evolutionary change during the whole period: ‘stasis’ was a reality. The remaining six species were more interesting. They also showed little change for most of the period. There was, however, a time when the water table fell and the lake was isolated from the rest of the rift valley. When this occurred, these six species changed rather rapidly. Through a depth of deposit of about one metre, corresponding roughly to 50,000 years, successive populations show changes of shape great enough to justify placing the later forms in different species. Later, when the lake was again connected to the rest of the rift valley, these new forms disappear suddenly, and are replaced by the original forms, which presumably re-entered the lake from outside, where they had persisted unchanged.
This is a clear example of stasis and punctuation. However, it offers no support for the view that changes, when they do occur, are not the result of selection acting within populations. Williamson does have intermediate populations, so we know that the change did not depend on the occurrence of a ‘hopeful monster’ (see below), or on the existence of an isolated population small enough to permit random changes to outweigh natural selection. The example is also interesting in showing how we may be misled if we study the fossil record only in one place. Suppose that, when the water table rose again, the new form had replaced the original one in the rest of the rift valley, instead of the other way round. Then, if we had examined the fossil record anywhere else but in Lake Turkana, we would have concluded, wrongly, that an effectively instantaneous evolutionary change had occurred.
Williamson’s study suggests an easy resolution of the debate. Both sides are right, and the disagreement is purely semantic. A change taking 50,000 years is sudden to a palaeontologist but gradual to a population geneticist. My own guess is that there is not much more to the argument than that. However, the debate shows no signs of going away.
One question that arises is how far the new ideas are actually new. Much less so, I think, than their proponents would have us believe. They speak and write as if the orthodox view is that evolution occurs at a rate which is not only ‘gradual’ but uniform. Yet George Gaylord Simpson, one of the main architects of the ‘modern synthesis’ now under attack, wrote a book, Tempo and Mode in Evolution, devoted to emphasising the great variability of evolutionary rates. It has never been part of the modern synthesis that evolutionary rates are uniform.
Yet there is a real point at issue. If it turns out to be the case that all, or most, evolutionary change is concentrated into brief periods, and associated with the splitting of lineages, that would require some serious rethinking. Oddly enough, it is not so much the sudden changes which would raise difficulties, but the intervening stasis. Why should a species remain unchanged for millions of years? The explanation favoured by most punctuationists is that there are ‘developmental constraints’ which must be overcome before a species can change. The suggestion is that the members of a given species share a developmental pathway which can be modified so as to produce some kinds of change in adult structure rather easily, and other kinds of change only with great difficulty, or not at all. I do not doubt that this is true: indeed, in my book The Theory of Evolution, published in 1958 and intended as a popular account of the modern synthesis, I spent some time emphasising that ‘the pattern of development of a given species is such that there are only a limited number of ways in which it can be altered without causing complete breakdown.’ Neo-Darwinists have never supposed that genetic mutation is equally likely to produce changes in adult structure in any direction: all that is assumed is that mutations do not, as a general rule, adapt organisms to withstand the agents which caused them. What is at issue, then, is not whether there are developmental constraints, because clearly there are, but whether such constraints can account for stasis in evolution.
I find it hard to accept such an explanation for stasis, for two reasons. The first is that artificial selection can and does produce dramatic morphological change: one has only to look at the breeds of dogs to appreciate that. The second is that species are not uniform in space. Most species with a wide geographical range show differences between regions. Often these differences are so great that one does not know whether the extreme forms would behave as a single species if they met. Occasionally we know that they would not. This requires that a ring of forms should arise, with the terminal links overlapping. The Herring Gull and Lesser Black-Backed Gull afford a familiar example. In Britain and Scandinavia they behave as distinct species, without hybridising, but they are linked by a series of forms encircling the Arctic.
Stasis in time is, therefore, a puzzle, since it seems not to occur in space. The simplest explanation is that species remain constant in time if their environments remain constant. It is also worth remembering that the hard parts of marine invertebrates, on which most arguments for stasis are based, tell us relatively little about the animals within. There are on our beaches two species of periwinkle whose shells are indistinguishable, but which do not interbreed and of which one lays eggs and the other bears live young.
The question of stasis and punctuation will be settled by a statistical analysis of the fossil record. But what of the wider issues? Is mutation plus natural selection within populations sufficient to explain evolution on a large scale, or must new mechanisms be proposed?
It is helpful to start by asking why Darwin himself was a believer in gradual change. The reason lies, I believe, in the nature of the problem he was trying to solve. For Darwin, the outstanding characteristic of living organisms which called for an explanation was the detailed way in which they are adapted to their forms of life. He knew that ‘sports’ – structural novelties of large extent – did arise from time to time, but felt that fine adaptation could not be explained by large changes of this kind: it would be like trying to perform a surgical operation with a mechanically-controlled scalpel which could only be moved a foot at a time. Gruber has suggested that Darwin’s equating of gradual with natural and of sudden with supernatural was a permanent feature of his thinking, which predated his evolutionary views and his loss of religious faith. It may have originated with Archbishop Sumner’s argument (on which Darwin made notes when a student at Cambridge) that Christ must have been a divine rather than a human teacher because of the suddenness with which his teachings were accepted. Darwin seems to have retained the conviction that sudden changes are supernatural long after he had rejected Sumner’s application of the idea.
Whatever the source of Darwin’s conviction, I think he was correct both in his emphasis on detailed adaptation as the phenomenon to be explained, and in his conviction that to achieve such adaptation requires large numbers of selective events. It does not, however, follow that all the steps had to be small. I have always had a soft spot for ‘hopeful monsters’: new types arising by genetic mutation, strikingly different in some respects from their parents, and taking a first step in the direction of some new adaptation, which could then be perfected by further smaller changes, We know that mutations of large effect occur: our only problem is whether they are ever incorporated during evolution, or are always eliminated by selection. I see no a priori reason why such large steps should not occasionally happen in evolution. What genetic evidence we have points the other way, however. On the relatively few occasions when related species differing in some morphological feature have been analysed genetically, it has turned out, as Darwin would have expected had he known of the possibility, that the difference is caused by a number of genes, each of small effect.
As I see it, a hopeful monster would still stand or fall by the test of natural selection. There is nothing here to call for radical rethinking. Perhaps the greatest weakness of the punctuationists is their failure to suggest a plausible alternative mechanism. The nearest they have come is the hypothesis of ‘species selection’. The idea is that when a new species arises, it differs from its ancestral species in ways which are random relative to any long-term evolutionary trends. Species will differ, however, in their likelihood of going extinct, and of splitting again to form new species. Thus selection will operate between species, favouring those characteristics which make extinction unlikely and splitting likely. In ‘species selection’, as compared to classical individual selection, the species replaces the individual organism, extinction replaces death, the splitting of species into two replaces birth, and mutation is replaced by punctuational changes at the time of splitting.
Some such process must take place. I have argued elsewhere that it may have been a relevant force in maintaining sexual reproduction in higher animals. It is, however, a weak force compared to typical Darwinian between-individual selection, basically because the origin and extinction of species are rare events compared to the birth and death of individuals. Some critics of Darwinism have argued that the perfection of adaptation is too great to be accounted for by the selection of random mutations. I think, on quantitative grounds, that they are mistaken. If, however, they were to use the same argument to refute species selection as the major cause of evolutionary trends, they might well be right. For punctuationists, one way out of the difficulty would be to argue that adaptation is in fact less precise than biologists have supposed. Gould has recently tried this road. As it happens, I think he is right to complain of some of the more fanciful adaptive explanations that have been offered, but I also think that he will find that the residue of genuine adaptive fit between structure and function is orders of magnitude too great to be explained by species selection.
One other extension of the punctuationist argument is worth discussing. As explained above, stasis has been explained by developmental constraints. This amounts to saying that the developmental processes are such that only certain kinds of animal are possible and viable. The extension is to apply the same idea to explain the existence of the major patterns of organisation, or ‘bauplans’, observable in the natural world. The existence of such bauplans is not at issue. For example, all vertebrates, whether swimming, flying, creeping or burrowing, have the same basic pattern of an internal jointed backbone with a hollow nerve cord above it and segmented body muscles either side of it, and the vast majority have two pairs of fins, or of legs which are derived from fins (although a few have lost one or both pairs of appendages). Why should this be so?
Darwin’s opinion is worth quoting. In The Origin of Species, he wrote:
It is generally acknowledged that all organic beings have been formed on two laws – Unity of Type, and the Conditions of Existence. By unity of type is meant that fundamental agreement in structure which we see in organic beings of the same class, and which is quite independent of their habits of life. On my theory, unity of type is explained by unity of descent. The expression of conditions of existence, so often insisted on by the illustrious Cuvier, is fully embraced by the principle of natural selection. For natural selection acts by either now adapting the varying parts of each being to its organic and inorganic conditions of life; or by having adapted them during the long-past periods of time ... Hence, in fact, the law of Conditions of Existence is the higher law; as it includes, through the inheritance of former adaptations, that of Unity of Type.
That is, we have two pairs of limbs because our remote ancestors had two pairs of fins, and they had two pairs of fins because that is an efficient number for a swimming animal to have.
I fully share Darwin’s opinion. The basic vertebrate pattern arose in the first place as an adaptation for sinusoidal swimming. Early fish have two pairs of fins for the same reason that most early aeroplanes had wings and tail-plane: two pairs of fins is the smallest number that can produce an upward or downward force through any point in the body. In the same vein, insects (which are descended from animals with many legs) have six legs because that is the smallest number which permits an insect to take half its legs off the ground and not fall over.
The alternative view would be that there are (as yet unknown) laws of form or development which permit only certain kinds of organisms to exist – for example, organisms with internal skeletons, dorsal nerve cords and four legs, or with external skeletons, ventral nerve cords and six legs – and which forbid all others, in the same way that the laws of physics permit only elliptical planetary orbits, or the laws of chemistry permit only certain compounds. This view is a manifestation of the ‘physics envy’ which still infects some biologists. I believe it to be mistaken. In some cases it is demonstrably false. For example, some of the earliest vertebrates had more than two pairs of fins (just as some early aeroplanes had a noseplane as well as a tailplane). Hence there is no general law forbidding such organisms.
What I have said about bauplans does not rule out the possibility that there may be a limited number of kinds of unit developmental process which occur, and which are linked together in various ways to produce adult structures. The discovery of such processes would be of profound importance for biology, and would no doubt influence our views about evolution.
One last word needs to be said about bauplans. They may, as Darwin thought, have arisen in the first place as adaptations to particular ways of life, but, once having arisen, they have proved to be far more conservative in evolution than the way of life which gave them birth. Apparently it has been easier for organisms to adapt to new ways of life by modifying existing structures than by scrapping them and starting afresh. It is for this reason that comparative anatomy is a good guide to relationship.
Punctuationist views will, I believe, prove to be a ripple rather than a revolution in the history of ideas about evolution. Their most positive achievement may be to persuade more people to study populations of fossils with adequate statistical methods. In the mean while, those who would like to believe that Darwin is dead, whether because they are creationists, or because they dislike the apparently Thatcherite conclusions which have been drawn from his theory, or find the mathematics of population genetics too hard for them, would be well advised to be cautious: the reports of his death have been exaggerated.
Send Letters To:
The Editor
London Review of Books,
28 Little Russell Street
London, WC1A 2HN
letters@lrb.co.uk
Please include name, address, and a telephone number.